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A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS

By Jayazam Sethuraman

Abstract

The "parameter" in a Bayesian nonparametric problem is the unknown distribu-

tion P of the observation X. A Bayesian uses a prior distribution for P, and after

observing X, solves the statistical inference problem by using the posterior distribution

of P, which is the conditional distribution of P given X. For Bayesian nonparametrics

to be successful one needs a large class of priors for which posterior distributions can

be easily calculated.

Unless X takes values in a finite space, the unknown distribution P varies in an

infinite dimensional space. Thus one has to talk about measures in a complicated space

like the space of all probability measures on a large space. This has always required a

more careful attention to the attendant measure theoretic problems.

A class of priors known as Dirichlet measures have been used for the distribution

of a random variable X when it takes values in 7?k, see Freedman (1963), Fabius (1964)

and Ferguson (1973). This family forms a conjugate family and possesses many pleasant

properties.

In this paper we give a simple and new constructive definition of Dirichlet measures

and remove the restriction that the basic space should be lk. We give complete self

contained proofs of the three basic results for Dirichlet measures:

1. The Dirichlet measure is a probability measure of on the space of all probability

measures,

2. it gives probability one to the subset ot discrete probability measures, and

3. the posterior distribution is also a Dirichlet measure.



1. Introduction.

Bayesian nonparametrics came into vogue in the seventies. Let X be a random
variable taking values in a measurable space (X, ) and let its unknown probability

measure be P. The "parameter" in a Bayesian nonparametrics problem is the un-

known probability distribution P. If X is not a finite set, this parameter takes values

in an infinite dimensional space, and hence the definition of a prior distribution for

P has always required a more careful description of the attendant measure theoretic

problems. A practitioner of Bayesian nonparametrics puts a prior distribution for
P and gives his answer to the inference problem as the posterior distribution of P
given X. How do we define such a prior distribution and calculate the posterior
distribution? Let P be the space of probability measures on (X, B) and note that P
varies in P. A natural a-field in P is C, the smallest a-field generated by sets of the
form {P: P(B) < r} where B varies in B and r varies in [0, 1]. A nonparametric
prior for a probability measure P is then a probability measure v on {P,C}. Let
(P,X) be a pal; of random variables taking values in {P x X,C x B} such that
P has distribution v and such that X given P has distribution P. The posterior

distribution vX i, defined to be the distribution of P given X.

Bayesian nonparametrics becomes tractable only if there are examples of priors

v for which vx are easy to calculate. A collection of prior distributions v( indexed
by a parameter a is said to form a conjugate family of priors if the posterior dis-
tribution v.,X is of the form vf(,,,x) for some function f(a, X) of a and X. The
class of Dirichlet measures form a conjugate family that makes it useful in Bayesian

nonparametrics.

Before giving an intuitive definition of a Dirichlet measure we will repeat
the well known definition of Dirichlet measures on finite dimensional spaces. Let
(-Y1,- 2 ... ,-.) be a vector such that yj -> 0,j = 1,2.... k and such thatE -Yj > 0.

Let z.,,,j = 1,2,... ,k be independent Gamma random variables with scale pa-
rameter 1 and shape parameters yj,,J = 1,2,... , k, respectively. Let z = E z-,j

and yj = (z.,, /z),j = 1,2,..., k. The joint distribution of the random variable

(Y1,Y2,... ,Yk) taking values in Pk = {(PP,. .. ,Pk) : P1 O,p > 0,... ,Pk >

0, Ep, = 1}, the unit simplex of lRk, is defined to be k-dimensional Dirichlet mea-
sure, 71 , _2 ...... tl)" Let ej denote the k-dimensional vector consisting of O's, except
for the jth co-ordinate, which is equal to 1. Notice that the Dirichlet measure D,
puts all its probability mass at the point ej. Further more, it is interesting to note

that V.e, = e.. This fact will use used later in the proof of Theorem 4.3.
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The intuitive definition of a Dirichlet measure in the general case is easy to
give. Let a be a non-zero element of M, i.e. let a be a non-zero finite measure
on (X, B). A probability distribution v on (P, C) is said to be a Dirichlet measure
with parameter a if for every measurable partition {B 1, B 2 ,..., Bk} of X, the dis-
tribution of (P(B 1), P(B 2),..., P(Bk)) under v is the finite dimensional Dirichlet
distribution E(a(B,),,(B2),...,a(B,)). When such a probability measure v on (-P,C)
can be demonstrated to exist, it will be denoted by E),.

There are three main properties of Dirichlet measures that make them useful
in Bayesian nonparametrics. Apart from their marginals having 4iti A; 0-'spOnPl
Dirichlet distributions, they possess the following three properties:
P1 D,, is a probability measure on (P, C),
P2 D,, gives probability one to the subset of all discrete probability measures on

(X,B), and
P3 the posterior distribution E)x is the Dirichlet measure D!a+bx where 6x is the

probability measure degenerate at X. This paper gives a constructive definition
of a Dirchlet measure and shows that these three properties hold.

Ferguson (1973) argued that the distributions of (P(B 1 ), P(B 2),... , P(Bk))
gave rise to a consistent family of measures over the class of all partitions (B 1 ,
B 2 ,... ,Bk). By the Kolmogorov consistency theorem this gives rise to a unique
probability measure on [0, 1]- with its associated Kolmogorov a-field. Further more,
for any given sequence of disjoint measurable sets B 1 , B 2 ,. .. ,the probability is one
that

P(uBj) = Z P(Bj), (1.1)

where P(.) is the canonical representation of a point in [0, 1]'. This set of probabiliLy
one may depend on the sequence B 1 , B 2 ,... Such a P is a member of P if and only
if (1.1) were true for all disjoint sequences B 1, B 2 ,... The collection of such disjoint
sequences is uncountable. This presents a problem in making this definition rigorous
and establishing property P1. For the special case where X is the real line, or more
generally a separable complete metric space, one can use a result of Harris (1968,
Lemma 6.1). This result states that a verification of (1.1) for a select countable
number of cases of disjoint sequences of sets is sufficient to ensure that (1.1) holds
for all disjoint countable sets and that the set function P is a probability measure.
An appeal to this result is one way to show that there is a probability measure on
(P, C) with the required properties and this defines the Dirichlet measure D,.

In a later section, Ferguson ((1973), Section 4) gives an alternative constructive
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definition of the Dirichlet measure which shows that it gives probability one to the
subset of discrete probability measures. However, it is takes some effort to see that
that the two definitions are equivalent.

Ferguson (1973) also establishes the posterior distribution property P3 by using
a very peculiar definition (see his Definition 2) for the joint distribution of (P, X).

Blackwell and McQueen (1973) appeal to the famous theorem of de Finetti to
show that there is a one-to-one correspondence between sequences of exchangeable
random variables and probability measures on (P, C). A pa: 'icular case of exchange-
able random variables, namely the generalized P61ya urn scheme, corresponds to
the Dirichlet measure. In this paper and in Blackwell (1973), they establish the
three properties P1, P2 and P3. Their proof is elegant but quite indirect and also
requires the space X to be a separable complete metric space.

Freedman (1963) and Fabius (1964) contain early work on tail-free priors, which
include Dirichlet priors, for the case when X is the set of integers or [0, 1].

Let £ be the usual Borel u-field restricted to [0, 1]. In Section 2, we define
a function P based on a sequence of i.i.d. random variables (&,-, Y), n = 1, 2...
taking values in ([0, 1] x X, x 13). See (2.1). By its very definition, P is a random
measure taking values in (P, C) and giving probability one to the subset of discrete
probability measures on (X, 1). This establishes properties P1 and P2. We give
a direct proof, in Theorem 3.4 of Section 3, that the finite dimensional marginal
distributions of P are Dirichlet distributions. This establishes that the distribution
of P is a Dirichlet measure. In Theorem 4.3 of Section 4 we prove property P3
thus establishing that the posterior distribution is also a Dirichlet measure. The
definition and proofs are all given in some detail to make this paper self contained.

This constructive definition of a Dirichlet measure was announced in a paper on
convergence of Dirichlet measures, Sethuraman and Tiwari (1982). This definition
has since been used by several authors to greatly simplify previous calculations and
to obtain new calculations involving Dirichlet measures. For instance see Ferguson
(1983), Ferguson, Phadia and Tiwari (1991), Kumar and Tiwari (1989).

2. Constructive definition of the Dirichlet measure

Let a be a non-zero finite measure on {X,13}. Let /(B) = a(B)/a(X) be the
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normalized probability measure arising from a. Let B(7, 6) stand for the Beta dis-
tribution on 10, 1] with parameters -y and 6. This Beta distribution is the marginal
distribution of the first co-ordinate of the Dirichlet measure D(y, 6) on the two-
dimensional simplex P 2 defined earlier. Let AK = {1, 2,.. .} be the set of positive
integers and let F be the a-field of all subsets of KA. Let {2, S, Q} be a proba-
bility space supporting a collection of random variables (0, Y, I) = ((9j, Y),j =
1,2,..., 1) taking values ii) (([0,1] x X)' x Af, (E x 5)' x F), with a joint dis-
tribution defined as follows. The random variables (91, 02,...) are i.i.d. with a
common Beta distribution B(1, a(X)). The random variables (1', Y2,...) are in-
dependent of the (01,02,...) and i.i.d. among themselves with common distribu-
tion j3. Let p, = 01 and for p,, = 0,,1 <m<._1(1 - Om) for n = 2,3,... N-
tice that El<,<nPm  = 1 - 1i<m<n(1 - Om) --- 1 with Q-probability one. Let

Q(I = nI(O, Y)) = pn,n = 1,2,.... The existence of a probability space (QS,Q)
and such a sequence of random variables (0, Y, I) follows from the usual construc-
tion of a product measure, and does not require any restrictions on (X, B), such as
its being a separable complete metric space.

Define
00

P(9,Y;B) = P(B)= E ,pby,,(B) (2.1)
n=1

where br(') stands for the probability measure degenerate at x.

This is the new constructive definition of a Dirichlet measure. As convenience
dictates, we drop all or part of the arguments (6, Y), B and denote the random
measure in (2.1) by P, for simplicity of notation. Since P is clearly a measurable
map from (Q, S) into (P, C) and takes values in the subset of discrete probability
measures, properties P1 and P2 are self evident.

Notice that the random variable I introduced above has not been used in the
definition of P. It will be used later, in Section 4, to prove the posterior distribution

property P3.

A more direct way to describe the constructive definition in (2.1) is as fol-
lows. Let Y1 ,Y 2 ,... be i.i.d. with common distribution i3. Let {pI,P2,...} be
the probabilities from a discrete distribution on the integers with discrete failure
rate {01,02,. .. } which are i.i.d. with a Beta distribution B(1, a(X)). Let P be the
random probability measure that puts weights p, at the degenerate measures 6-,
n = 1,2,... This is the random probability measure P described in (2.1). The alter-
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native definition given in Ferguson ((1973), Section 4) uses a different set of random

weights which are arranged in decreasing order. The use of unordered weights in

this paper simplifies all our calculations. It is interesting to note that the weights

used by Ferguson (1973) are equivalent to our weights rearranged in decreasing or-

der. However, it is not clear that there is an easy way to unorder the weights of

Ferguson (1973) to obtain weights with the simple structure of (2.1).

3. The distribution of the random measure P is Da.

We will digress a little before establishing that the distribution of P is the

Dirichlet measure E),.

Let 0,=, n+1,Y,* -Yn+,n =1,2... and let J = I- 1. Define (0*,Y*,J)=
((0 ,*, ... .), (Y*,1 Y,.. ) J).

Notice hat

P(e, Y; B) = 91 5 by (B) + (1 - 01)P(O*, Y*; B). (3.1)

Notice that (0", Y*) has the same distribution as (0, Y) and is independent of

(01, Y1). Thus we can re-write (3.1) as the following distributional equation for P:

P L 01by, + (1 - 01)P, (3.2)

where on the right hand side P is independent of (01, Y1 ).

Theorem 3.4 below uses the distributional equation (3.2) to show that the dis-
tribution of P is the Dirichlet measure E)r. The proof of this theorem uses well

known facts about finite dimensional Dirichlet measures and a result on the unique-

ness of solutions to distributional equations, which are given below as Lemmas 3.1,

3.2 Ind 3.3.

Lemma 3.1 Let 'Y = (71,72,...7,k) and 6 = (61,52,... , 6 k) be k-dimensional
vectors. Let U, V be independent k-dimensional random vectors with Dirichlet dis-

tributions TDy and D, respectively. Let W be independent of (U,V) and have a

Beta distribution B(y,6), where y = E-yj and 6 = 6j. Then the distribution of

WU + (1 - W)V is the Dirichlet distribution D-,+6.
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Lemma Z.2 Let = (-yi,...,7k), -y = EZ-i and let fj = -yl/y,j = 1,2,...,k.
Ithen

ZPj*D-I+ej = Thy,

The proofs of these two lemmas are found in many standard text books, for

instance in Wilks ((1962), Section 7).

Lemma 3.3 stated and proved below shows that certain distributional equations

have unique solutions. Such results appear in several areas of statistics, notably in

renewal theory. For a recent work which gives more general results see Goldie (1991).

The following lemma ;, sufficient for our purposes. Its proof, which is not new, is

given here to make this paper self contained.

Lemma 3.3 Let W, U, V be random variables where W is a real valued and U, V

take values in a linear space. Suppose that V is independent of (TV, U) and satisfies

the distributional equation

V -L' U + WV. (3.3)

Suppose that P(W = 1) : 1. Then there is only one distribution for V that satisfies

(3.).

Proof: Let V and V' be two random variables whose distributions are not equal

but satisfy equation (3.3). Let (Wa, Un) be independent copies of (TV, U) which are

independent of V, V'. Let V = V, V 1 = V' and define, recursively,

V =+l Un + WnVn and V4' = U .TVVn

for n = 1,2,... From the distributional equation (3.3), the V's have the same

distribution as V and the V"s have the same distribution as V'. However,

JVn+ - V+ 1 = JWnJIVn - V'I = 1-[ IWIIV - Vi -0
I<m<n

with probability 1, since the Wn's are i.i.d. and P(W = 1) < 1. This contradicts

the supposition that the distributions of V and V' are unequal and proves that the

distribution of V satisfying (3.3) is unique.

Theorem 3.4 Let {B 1,B 2 ,.. .,Bk be a measurable partition of X and let P =

(P(BI), P(B 2 ),... , P(Bk )). Then the distribution of P is the k-dimensional Dirich-

let measure D(,(S,),a(B
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Proof: Let D = (6y,(BI),by,(B 2),.. ., y,(Bk)). Notice that P(D = ej) =

P(Y E Bi) = P(Bj),j = 1,2,... ,k. From (3.2) we see that P satisfies the distri-

butional equation

P t 01D + (1 - 01)P, (3.4)

where, on the right, 01 has a Beta distribution B(1, a(X)), D is independent of 01

and takes the value ej with probability I(Bj),j = 1, 2,... , k, and the k-dimensional

random vector P is independent of (01, D).

We will first verify that the k-dimensional Dirichlet measure for P satisfies the

distributional equation (3.4) and then show that this solution is the unique solution.

Let the distribution of P on the right of (3.4) be the k-dimensional Dirich-

let measure 1)(a(B,),a(B2 ),..., (Bk)). The k-dimensional Dirichlet measure D)ej gives
probability 1 to ej. Given that D = ej, the distribution of 91D + (1 - 9I)P is

the distribution of OIDej + (1 - 9 1)E)(c(B,),a(B 2),...,c(Bk)) and this, by Lemma 3.1,

is D(a(B),a(B2),...,a(Bk))+ej" Summing over the distribution of D is equivalent to

taking a mixture of these Dirichlet measures with weights ,6(Bj) = a(Bj)/a(X),

which by Lemma 3.2, is equal to D(a(BI),a(B 2),...,.a(Bk)). This verifies that the k-

dimensional Dirichlet measure satisfies the distributional equation (3.4). Lemma

3.3 shows that this solution is unique. This completes the proof of Theorem 3.4. K

4. The posterior distribution of P is +

Let X = YI. Then X is a random variable from (Q, S) into X defined explicitly

as a function of ( , Y, I). The next lemma shows that the distribution of X given

P is P and hence the joint distribution of (P, X) is that of the parameter and

observation in a Bayesian nonparametric problem.

Lemma 4.1 The distribution of X given P is P.

Proof: Let B E B. By direct calculation, we get

Q(X E BI(e,Y)) = ZQ(X E B,I = nI(4,Y))Q(I = ni(O,Y))

= ZQ(Yn E BJ(0,Y))pn
n

= Zpn yb (B) = P(B).
Is
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Since this conditional probability is a function of P, it immediately follows that

Q(-P) exists as a regular conditional probability and Q(X E BIP) = P(B) wth

Q-probability 1. K>

We now come to the posterior distribution of P, i.e. the distribution of P
given X. We do this by separately obtaining the conditional distribution of (0, Y)

given I = 1 and given I > 1. When f and g are functions of (0, Y, I), we will use

the notations C(f) and C(f1g) to denote the distribution of f and the conditional

distribution of f given g, under Q, respectively.

Lemma 4.2 The following are the conditional distributions of (0, Y, I) given I = 1
and given I > 1:

C((0, Y), (O, Y*)II= 1) = .5(2, a(X)) x L(0,Y) (4.1)

and

£((91,Y),(*,Y*),JII > 1) = B(1, a(X) + 1) x £(O,,Y,I). (4.2)

Proof: Notice that Q(I = 1I(0,Y)) = 01. Thus, ifAi, E SB, E ?3, i = 1,2,...,n,
we have the relation

Q{kOi E Ai, Yi E Bi, i = 1),2,. .. , n, I = 1)

oC f I(xi E Ailyi E Bi,i = 1,2,...,n) x1 , [(1- xi)a(X)ldxi,(dyj]
I <i n

This implies, conditional on I = 1, 01 has distribution B(2, a(X)), the distributions
of O,i = 2,3,...,n and Y,i = 1,2,...,n. are all unchanged, and all these are
independent. This gives all the finite dimensional conditional dibLributions and
proves (4.1). The proof of (4.2) follows along the same lines since Q(I > 1 (0, Y)) =
1 - 9i. K>

Theorem 4.3 The posterior distribution of P given X is the Dirichlet measure

VQ+6x •

Proof: Let P* = P(O*,Y*). We can rewrite (3.1) as

P= 0y, + (1 - 01 )P*. (4.3)
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When I = 1, we use (4.1) and obtain

£(PIX, I= 1) = £(O by, +(1 -9)P*IX, I= 1)

0,16x + (1 - )P* (4.4)

where 0' has distribution B(2, a(X)), and P*" is a random probability ineasure.

independent of 0', whose distribution is the Dirichlet measure E 0 . The random

probability measure putting all its mass on the degenerate measure 6x is the Dirich-

let measure D6x which is also equal to E26x. Since 0' has a Beta distribution

B(2, a(X)), this latter choice allows us to use Lemma 3.1 to obtain

1(PIX, I = 1) ° D0 +26,. (4.5)

When I > 1, we use (4.2) and first obtain

(8*,Y*',XII > 1)= I(eY,X) (4.6)

since X = i = Y; on I > 1. Thus

1(PIX, I > 1) £( 91 + (1 - O)PIx, I > 1)

= 06y, + (1 - 6")P*** (4.7)

where Y has distribution 3, 0' is independent of 1 and has distribution

B(1, a(X) + 1), and P**" is a random probability measure, independent of (1. 9,'),

whosc distribution is £(PIX), in view of (4.6). We can combne (4.4) and (4.7) to

obtain a distributional equation for £(PIX) as follows.

£(PIX) "' A(O6x + (1 - 0')P") + (1 - A)(', 1'6 +(1 -0')p*"), (4.8)

where all the random variables on the right are independent and have the distri-

butions previously specified, and the random variable A takes values 1 and 0 with

probabilities and o(a)(,(X)+i) (a(X)+i), respectively. Notice that the distribution of
P*** is £(PIX) which makes (4.8) a distributional equation.

From Lemma 3.3 we conclude that if there is a solution to (4.8), it will be a

unique solution. We will now verify that £(P X) = D,+ 6 , verifics the distributional

equation (4.8). Relation (4.5) can be rewritten as

O9lbX + (1- O'I)P' _ , 0 +2 ,,. (4.9)

10



By conditioning on Y and using Lemma 3.1, and then taking expectations with

respect to Y1, we find that

O', + (1 - of')P*** Sit E(D.+6,+,, (4.10)

where Y has distribution/3. Let Z be a random variable in (X, B) with distribution
S 6(X) = (X) ) Combining (4.9) and (4.10), and using Lemma

(a(X)+1) (- ( ) +1) - Ta + 1)
3.2 on mixtures of Dirichlet measures, we conclude the distribution of the random

measure in the right hand side of (4.8) is equal to

1 + a(X) E(ty 6  ~ ED~~-"z
(Q(X) + 1 )D.+ 26

x + ((X) + 1) E(D -+ 6X + b1" ) 
a

at

This proves that Da+6x is the posterior distribution of P given X. K>
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Unless X takes values in a finite space, the unknown distribution P varies in an
infinite dimensional space. Thus one has to talk about measures in a complicated
space like the space of all probability measures on a large space. This has always
required a more careful attention to the attendant measure theoretic problems.

A class of priors known as Dirichlet measures have been used for the distribution
of a random variable X when it takes values in 1Zk, see Freedman (1963), Fabius
(1064) and Ferguson (1973). This family forms a conjugate family and possesses
many pleasant properties.

In this paper we give a simple and new constructive definition of Dirichlet
measures and remove the restriction that the basic space should be lk. We give
complete self contained proofs of the three basic results for Dirichlet measures:

1. The Dirichlet measure is a probability measure of on the space of all probability
measures,

2. it gives probability one to the subset of discrete probability measures, and
3. the posterior distribution is also a Dirichlet measure.
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